1 Introduction

1.1 Background and Rationale

In the context of the world-wide push to achieve HIV epidemic control, quality health information is essential to benchmark and monitor progress to achieving 95-95-95 care cascade targets. Evidence from research and practices suggests that electronic patient tracking systems (EPTS) improve the quality and use of clinical data. To this end, Mozambique has rapidly scaled-up the use of EPTS in public health clinics, with funding from the US government President’s Plan for Emergency AIDS Relief (PEPFAR). Nonetheless, the Mozambique Ministry of Health (MoH) relies on paper-based reporting systems at the health facility level, which the district and province statistical centers aggregate into an electronic DHIS2-based national health information system (SIS-MA). MoH uses this information to monitor HIV epidemic trends and allocate resources. Given the reliance on both electronic and paper-based reporting systems at the site level, concordance between the two datasets takes on high importance to ensure accurate, timely, complete, and reliable data for decision-making.

Since 2015, PEFPAR clinical/implementing partners (IPs) have conducted EPTS data quality assessments (DQA) to evaluate and improve concordance between patient health information in EPTS and paper files. In total, PEPFAR IPs offer technical assistance to 470 health facilities, which provide the majority of antiretroviral treatment (ART) to the 1.5 million patients currently on treatment in Mozambique. During an EPTS DQA, IP evaluation teams visit sites and sample patient charts, abstracting a set of variables and comparing them to data in electronic patient files. Teams calculate concordance as a measure of timeliness of data entry, accuracy of information, and completeness of both paper and electronic records. For the exact steps involved in this activity, review the project protocol. PEPFAR strategic information partner, the University of California San Francisco (UCSF) manages the national EPTS DQA dataset and produces summary reports.

This report presents findings from EPTS DQAs that PEPFAR IPs conducted from October to December 2017. In total, IPs conducted EPTS DQAs at 278 sites, reviewing data from the Q4 quarter. IPs shared site level results with UCSF via Excel for analysis. UCSF looked at global concordance between patient charts and EPTS data for select variables and presents trends by type of error: documentation error in patient charts; lack of data entry in EPTS; or error in EPTS data entry. To be considered good quality data, we are aiming for concordance of 90% or higher.

1.2 Objectives

  1. Evaluate the agreement of the existing data in the Clinical Process and the data in the electronic database (SESP).
  2. Evaluate the completeness of the data entered into the electronic database.
  3. Improve the quality of data in SESP.

2 Methods or Procedures

2.1 Patient Chart Selection for EPTS DQA

For the first EPTS DQA, IPs selected a representative sample of patient charts, using the guidance from Table 1. For each subsequent EPTS DQA at the same site, IPs selected a convenience sample, as described below.

Table 1: Patient Chart Sampling: Representative Sample

2.1.1 Convenience Sample for Subsequent EPTS-DQA

After the first EPTS DQA in a facility, the subsequent DQA or follow-up DQA use a convenience sample of 50 charts, from select sub-populations of patients, as follows:

  • 10 patients who received ART during a pre-natal consult (ANC)
  • 20 adult patients active on ART
  • 10 patients from the ART Aderence Community Groups
  • 5 pediatric patients on ART
  • 5 patients active on ART and also receiving TB treatment

2.2 Electronic Patient Tracking System DQA Indicators

Electronic patient tracking system DQA assesses the quality of variables (see table 2) in the database, compared with the information in the clinical files (primary source of the data).

Table 2: Variables assessed during the EPTS DQA activities

Table 2: Variables assessed during the EPTS DQA activities

2.3 EPTS DQA Data Collection

Using an Excel book (not shown here), teams pull the charts identified in the patent sampling and compare the data in the charts with the data in the EPTS. Possible results are:

  1. X: Errors in documentation in patient file: No data in the patient file
  2. 0: Concordance: Data in the patent file and the data in the EPTS match
  3. 1: Missing Data Entry: Data in the patient file has not been entered into the EPTS
  4. 2: Error in Data Entry: Data in the patient file and data in the ePTS do not match
  5. Error in documentation: data are in the EPTS but not in the patient file (similar to X)
    1. 3a) Possible to confirm with another primary source document
    2. 3b) Data entry error: Not possible to confirm with another primary source document
  6. Not Applicable: When the data are not applicable, such as pregnancy for men

2.4 EPTS DQA Data Analysis

2.4.1 Calculating the Concordance

The concordance divides the absolute value counted in the database by the information found in the clinical file. Concordance is defined by two conditions:

  1. Data in the patient chart matches data in the EPTS database (i.e. variable present and is the same value)
  2. Data in the patient chart is missing, but it can be confirmed and matched via an alternate primary source, such as pharmacy receipts.

For EPTS DQA the goal is to achieve a 90% concordance with the clinical file data (patient file). If the objective is not reached, actions plans have to be put in place in order to improve the quality of the data.

Concordance:

\[ \frac{ABS(\mbox{data recounted in EPTS database})}{\mbox{Data recounted in the clinical file or confirmed in an alternate primary document}} \]

The goal is a minimum agreement of 90%. Teams should work with every health facility with less than 90% agreement to enhance data entry and mentoring for the correct completion of clinical processes.

3 Key Findings

3.1 Health Facility Sample

IPs conducted EPTS DQA in 278 health facilities, from a total of 4701 health facilities in Mozambique with EPTS. The majority of health facilities were assessed in Maputo province (58), followed by Zambezia (47), Gaza (32), Maputo City (27) and 26 in Inhambane province. The USAID IP for Tete, Manica, Sofala and Niassa assessed fewer than 20 health facilities per province, with teams assessing the fewest sites in Niassa (5) and Sofala (7). This is due in part to the low coverage of EPTS in these provinces. Figure 3.1 shows the interactive maps with clustered number of health facilities assessed together with the volume of patients currently on ART2 by facility.

Figure 3.1: Health facilities assessed across the country

3.2 Patient Charts Sample

The number of health facilities assessed per province ranged from 5-47, as partners used both sampling methodologies to select charts for assessment. The maximum number of 47 health facilities was assessed in Zambézia province, while the minimum number assessed of 5 was assessed in Niassa province. The mean number of charts assessed was 48.9, while the median number was 50. In two provinces- Maputo City, Manica and Gaza - partners sampled more than 50 patient charts per facility, suggesting that they used the sampling approach for first time assessments (Table 3.1).

Table 3.1: Max and Min number of patients files selected with number of sites assessed by province
province n Mean Minimum Maximum
Cabo Delgado 23 24.8 15 50
Gaza 32 50.0 25 146
Inhambane 26 50.0 50 50
Manica 15 56.9 50 146
Maputo 58 42.1 15 73
Maputo City 27 57.1 34 150
Nampula 20 50.0 50 50
Niassa 5 50.0 47 50
Sofala 7 49.0 48 50
Tete 18 49.4 42 68
Zambezia 47 50.0 49 50

Most partners adhered to the representative sampling outlined in Table 1, while some partners assessed a larger sample of patient charts. At two health facilities in Maputo City- HG José Macamo (n=100) and CS Chamanculo - (n=150) the IP selected a sample greater than 50. In Manica province, the IP assessed a large sample at CS Inchope (n=146), while the IP for Gaza province assessed a large sample at CS Zongoene (n=100) and CS Manjangue (n=146). There were some health facilities with a sample of patient files less than 50 and out of scope to be considered as part of the first round of assessment or convenience sample for subsequent assessments. More details on sample of patient chart per health facility can be found in Table 3.2.

Table 3.2: List of health facilities with sample of patient files selected by province
province district facility sample
Cabo Delgado Chiure CS Catapua 30
Cabo Delgado Chiure CS Chiure Velho 27
Cabo Delgado Chiure CS M’mala 25
Cabo Delgado Chiure CS Marera 30
Cabo Delgado Chiure CS Mazeze 25
Cabo Delgado Chiure CS Muege 24
Cabo Delgado Chiure CS Nakoto 24
Cabo Delgado Chiure CS Namogelia 25
Cabo Delgado Chiure CS Samora Machel 33
Cabo Delgado Ibo CS Ibo 15
Cabo Delgado Mocimboa da Praia CS Milamba 26
Cabo Delgado Mocimboa da Praia CS Nanduadua 29
Cabo Delgado Mocimboa da Praia HR Mocimboa da Praia 50
Cabo Delgado Muidumbe CS Chitunda 35
Cabo Delgado Muidumbe CS Miangalewa 35
Cabo Delgado Muidumbe CS Miteda 35
Cabo Delgado Muidumbe CS Muambula 34
Cabo Delgado Muidumbe CS Muatide 35
Cabo Delgado Muidumbe CS Namacande 35
Cabo Delgado Muidumbe CS Ntchinga 35
Cabo Delgado Quissanga CS Bilibiza 20
Cabo Delgado Quissanga CS Cagembe 20
Cabo Delgado Quissanga CS Quissanga 33
Gaza Chibuto CS Chaimite 50
Gaza Chibuto CS Chimundo 50
Gaza Chibuto CS Chipadja 50
Gaza Chibuto CS Coca Missava 50
Gaza Chibuto CS Maqueze 50
Gaza Chibuto CS Meboi 50
Gaza Chicualacuala CS Mapai 50
Gaza Chigubo CS Ndindiza 50
Gaza Chokwe CS Hokwe 50
Gaza Chokwe CS Manjangue 146
Gaza Chokwe CS Urbano 3º Bairro 50
Gaza Cidade de Xai-Xai CS Marien Nguabi 50
Gaza Cidade de Xai-Xai CS Praia 50
Gaza Cidade de Xai-Xai CS Unidade 7 50
Gaza Distrito de Xai-Xai CS Banhine 50
Gaza Distrito de Xai-Xai CS Bungane 50
Gaza Distrito de Xai-Xai CS Chilaulane 50
Gaza Distrito de Xai-Xai CS Chipenhe 50
Gaza Distrito de Xai-Xai CS Julius Nyerere 50
Gaza Distrito de Xai-Xai CS Maciene 50
Gaza Distrito de Xai-Xai CS Nhacutse 50
Gaza Distrito de Xai-Xai CS Siaia 50
Gaza Distrito de Xai-Xai CS Vladimir Lenine 50
Gaza Distrito de Xai-Xai CS Zongoene 100
Gaza Distrito de Xai-Xai PS Ndambine 2000 50
Gaza Guija CS Chibabel 50
Gaza Mabalane CS Combomune 50
Gaza Mandlakazi CS Incadine 50
Gaza Mandlakazi CS Macuacua 25
Gaza Mandlakazi CS Tavane 50
Gaza Massangena CS Massangena 50
Gaza Massingir CS Massingir 50
Inhambane Cidade de Inhambane CS Balane (Urbano ) 50
Inhambane Cidade de Inhambane CS Muelé 50
Inhambane Cidade de Inhambane CS Salela 50
Inhambane Cidade de Inhambane HP Inhambane 50
Inhambane Funhalouro CS Funhalouro 50
Inhambane Govuro CS Doane 50
Inhambane Homoine CS Homoine 50
Inhambane Inharrime CS Chongola 50
Inhambane Inharrime CS Inharrime 50
Inhambane Inhassoro CS Inhassoro 50
Inhambane Inhassoro CS Mangugumete 50
Inhambane Jangamo CS Cumbana 50
Inhambane Jangamo CS Jangamo 50
Inhambane Mabote CS Mabote 50
Inhambane Massinga HD Massinga 50
Inhambane Maxixe CS Agostinho Neto 50
Inhambane Maxixe CS Mabil 50
Inhambane Maxixe CS Maxixe 50
Inhambane Maxixe HR Chicuque 50
Inhambane Morrumbene CS Morrumbene 50
Inhambane Panda CS Panda 50
Inhambane Vilankulos CS Chibuene 50
Inhambane Vilankulos CS Mapinhane 50
Inhambane Vilankulos HR Vilanculos 50
Inhambane Zavala CS Zandamela 50
Inhambane Zavala HD Quissico 50
Manica Barue HD Catandica 50
Manica Cidade de Chimoio CS 1º de Maio 50
Manica Cidade de Chimoio CS 7 De Abril 50
Manica Cidade de Chimoio CS Chissui 50
Manica Cidade de Chimoio CS Eduardo Mondlane 50
Manica Cidade de Chimoio CS Nhamaonha 50
Manica Cidade de Chimoio CS Vila Nova 50
Manica Cidade de Chimoio HP Chimoio 50
Manica Gondola CS Inchope 146
Manica Gondola HD Gondola 50
Manica Macate CS Macate 50
Manica Manica CS Machipanda 50
Manica Manica HD Manica 50
Manica Sussundenga CS Sussundenga 50
Manica Vanduzi CS Vanduzi 50
Maputo Boane CS Beleluane 73
Maputo Boane CS Boane 73
Maputo Boane CS Campoane 49
Maputo Boane CS Mulotana 40
Maputo Boane PS Matola-Rio 31
Maputo Magude CS Chichuco 28
Maputo Magude CS Magude 35
Maputo Magude CS Mahel 15
Maputo Magude CS Mapulanguene 27
Maputo Magude CS Moine 28
Maputo Magude CS Motaze 24
Maputo Magude CS Panjane 23
Maputo Manhica CS 3 de Fevereiro 30
Maputo Manhica CS Calanga 38
Maputo Manhica CS Chibucutso 43
Maputo Manhica CS Ilha Josina 30
Maputo Manhica CS Malavela 45
Maputo Manhica CS Maluana 45
Maputo Manhica CS Manhiça 50
Maputo Manhica CS Maragra 50
Maputo Manhica CS Munguine 40
Maputo Manhica CS Nwamatibjana 30
Maputo Manhica CS Taninga 27
Maputo Manhica HR Xinavane 30
Maputo Marracuene CS Habel Jafar 50
Maputo Marracuene CS Marracuene 50
Maputo Marracuene CS Mumemo 50
Maputo Marracuene CS Nhongonhane 50
Maputo Marracuene CS Ricatla 50
Maputo Matola CS Boquisso 50
Maputo Matola CS Khongolote 50
Maputo Matola CS Liberdade 50
Maputo Matola CS Machava II 35
Maputo Matola CS Matola 50
Maputo Matola CS Matola Gare 30
Maputo Matola CS Matola II 30
Maputo Matola CS Muhalaze 30
Maputo Matola CS Ndlavela 30
Maputo Matola CS S. Damanse 21
Maputo Matola CS Tsalala 50
Maputo Matola CS Unidade A 50
Maputo Matutuine CS Catuane 50
Maputo Matutuine CS Hindanne 50
Maputo Matutuine CS Matutuine 50
Maputo Matutuine CS Mungazine 50
Maputo Matutuine CS Nsime 50
Maputo Matutuine CS Ponta do Ouro 50
Maputo Matutuine CS Salamanga 50
Maputo Matutuine CS Santa Maria 50
Maputo Moamba CS Moamba 50
Maputo Moamba CS Ressano Garcia 30
Maputo Moamba CS Sabie 30
Maputo Moamba CS Tenga 30
Maputo Namaacha CS Changalane 41
Maputo Namaacha CS Goba 50
Maputo Namaacha CS Mafuiane 45
Maputo Namaacha CS Mahelane 50
Maputo Namaacha CS Namaacha 50
Maputo City Kamavota CS 1 de Junho 50
Maputo City Kamavota CS Albazine 50
Maputo City Kamavota CS Hulene 50
Maputo City Kamavota CS Mavalane 50
Maputo City Kamavota CS Pescadores 50
Maputo City Kamavota CS Romão 50
Maputo City Kamavota HG Mavalane 50
Maputo City KaMaxakene CS 1 de Maio 50
Maputo City KaMaxakene Hospital P. Caniço 50
Maputo City Kampfumo CS Alto Maé 50
Maputo City Kampfumo CS Malhangalene 50
Maputo City Kampfumo CS Maxaquene 50
Maputo City Kampfumo CS Polana Cimento 50
Maputo City Kampfumo CS Porto 50
Maputo City Kampfumo HCM Adultos 34
Maputo City Kampfumo HCM Pediatrico 50
Maputo City Kamubukwana CS Bagamoio 50
Maputo City Kamubukwana CS Inhagoia 50
Maputo City Kamubukwana CS Magoanine 50
Maputo City Kamubukwana CS Magoanine Tendas 50
Maputo City Kamubukwana CS Zimpeto 50
Maputo City Kamubukwana HPsi Infulene 50
Maputo City Kanyaka CS Inhaca 50
Maputo City Katembe CS Catembe 50
Maputo City Nlhamankulu CS Chamanculo 150
Maputo City Nlhamankulu CS Xipamanine 50
Maputo City Nlhamankulu HG José Macamo 100
Nampula Distrito de Nampula CS Anchilo 50
Nampula Distrito de Nampula CS Maratene 50
Nampula Distrito de Nampula CS Muhala Expansão 50
Nampula Distrito de Nampula CS Namicopo 50
Nampula Distrito de Nampula CS Napipine 50
Nampula Distrito de Nampula HG Marrere 50
Nampula Lalaua CS Lalaua 50
Nampula Larde CS Larde 50
Nampula Liupo CS Liupo 50
Nampula Malema CS Mutuali 50
Nampula Meconta CS Nacavala 50
Nampula Memba CS Memba 50
Nampula Moma CS Chalaua 50
Nampula Monapo H.D. Monapo 50
Nampula Mossuril CS Mossuril 50
Nampula Muecate CS Muecate 50
Nampula Nacala-a-Velha CS Nacala Porto 50
Nampula Nacala-a-Velha CS Nacla-a-Velha 50
Nampula Rapale CS Namaita 50
Nampula Rapale CS Rapale 50
Niassa Cuamba CS Cuamba 50
Niassa Distrito de Lichinga CS Chiuaula 47
Niassa Distrito de Lichinga CS Lichinga 50
Niassa Distrito de Lichinga CS Namacula 50
Niassa Mandimba CS Mandimba 50
Sofala Buzi HR BUZI 48
Sofala Cidade da Beira CS M. Mascarenha 50
Sofala Cidade da Beira CS Macurrungo 50
Sofala Cidade da Beira CS Munhava 50
Sofala Cidade da Beira CS Nhaconjo 50
Sofala Cidade da Beira CS Ponta Gea 50
Sofala Cidade da Beira HC BEIRA 50
Tete Angonia CS Ulongue 50
Tete Cahora Bassa CS Chitima 50
Tete Cahora Bassa HR Songo 50
Tete Changara CS Changara 50
Tete Changara CS Dzunga 68
Tete Chiuta CS Manje 50
Tete Cidade de Tete CS Mpadue 50
Tete Cidade de Tete CS Nº 1 - Bairro Magaia 51
Tete Cidade de Tete CS Nº 2 - Bairro Matundo 50
Tete Cidade de Tete CS Nº 3 - Bairro Manyanga 50
Tete Cidade de Tete CS Nº 4 - Bairro Muthemba 50
Tete Cidade de Tete HP Tete 50
Tete Doa CS Doa 42
Tete Magoe CS Magoe 50
Tete Magoe CS Mucumbura 50
Tete Moatize CS Moatize 50
Tete Moatize CS Zobue 50
Tete Mutarara HR Mutarara 44
Zambezia Alto Molocue CS Nauela 50
Zambezia Alto Molocue HD Alto Mulocue 50
Zambezia Cidade de Quelimane CS 17 De Setembro 50
Zambezia Cidade de Quelimane CS 24 de Julho 50
Zambezia Cidade de Quelimane CS 4 de Dezembro 50
Zambezia Cidade de Quelimane CS Chabeco 50
Zambezia Cidade de Quelimane CS Coalane 50
Zambezia Cidade de Quelimane CS Estação Malanha 50
Zambezia Cidade de Quelimane CS Incidua 50
Zambezia Cidade de Quelimane CS Madal 50
Zambezia Cidade de Quelimane CS Maquival-Rio 50
Zambezia Cidade de Quelimane CS Maquival Sede 50
Zambezia Cidade de Quelimane CS Micajune 50
Zambezia Cidade de Quelimane CS Namuinho 50
Zambezia Cidade de Quelimane CS Sangarivera 50
Zambezia Cidade de Quelimane CS Varela 50
Zambezia Cidade de Quelimane PS Zalala Mar 50
Zambezia Gile CS Moneia 50
Zambezia Gile HD Gilé 50
Zambezia Ile CS ILE-Sede 50
Zambezia Ile CS Mungulama 50
Zambezia Inhassunge CS Bingagira 50
Zambezia Inhassunge CS Chirimane 50
Zambezia Inhassunge CS Gonhane 50
Zambezia Inhassunge CS Inhassunge-Sede 50
Zambezia Inhassunge CS Palane-Mucula 50
Zambezia Maganja da Costa CS Cariua 50
Zambezia Maganja da Costa CS Maganja da Costa 49
Zambezia Maganja da Costa CS Nante 50
Zambezia Mocubela CS Gurai 50
Zambezia Mocubela CS Mocubela 50
Zambezia Mocubela CS Naico 50
Zambezia Mocubela CS Tapata 50
Zambezia Mulevala CS Mulevala 50
Zambezia Namacurra CS Macuse 50
Zambezia Namacurra CS Malei 50
Zambezia Namacurra CS Mbawa 50
Zambezia Namacurra CS Mexixine 50
Zambezia Namacurra CS Muceliua 50
Zambezia Namacurra CS Mugubia 50
Zambezia Namacurra CS Namacurra-Sede 50
Zambezia Namacurra PS Furquia 50
Zambezia Namacurra PS Mutange 50
Zambezia Pebane CS 7 de Abril 50
Zambezia Pebane CS Alto Maganha 50
Zambezia Pebane CS Magiga 50
Zambezia Pebane CS Pebane-Sede 50

3.3 Global Concordance Results

From Table 3.3, results suggest that the majority of health facilities had concordance of good quality, i.e., 90% or greater of data abstracted from patient files matched the electronic information in the database. There were some health facilities clustered in Gaza and Tete province with global concordance less than the target of 90%, meaning that the information from EPTS differed from original source, on average, greater than 10%. We also see this trend in some health facilities in Inhambane and Maputo City (in one health facility), Manica (in two health facilities), Nampula and Sofala (in three health facilities) and Zambezia (in five health facilities) with concordance less than 90%, showing mismatch of data into the electronic systems when compared with patient files.

Table 3.3: Global concordance for the sites assessed
province district facility Concordance
Cabo Delgado Chiure CS Catapua 100
Cabo Delgado Chiure CS Chiure Velho 98.2
Cabo Delgado Chiure CS M’mala 97.4
Cabo Delgado Chiure CS Marera 98
Cabo Delgado Chiure CS Mazeze 100
Cabo Delgado Chiure CS Muege 100
Cabo Delgado Chiure CS Nakoto 98.2
Cabo Delgado Chiure CS Namogelia 97.1
Cabo Delgado Chiure CS Samora Machel 100
Cabo Delgado Ibo CS Ibo 98.4
Cabo Delgado Mocimboa da Praia CS Milamba 95
Cabo Delgado Mocimboa da Praia CS Nanduadua 100
Cabo Delgado Mocimboa da Praia HR Mocimboa da Praia 95.8
Cabo Delgado Muidumbe CS Chitunda 100
Cabo Delgado Muidumbe CS Miangalewa 100
Cabo Delgado Muidumbe CS Miteda 100
Cabo Delgado Muidumbe CS Muambula 100
Cabo Delgado Muidumbe CS Muatide 100
Cabo Delgado Muidumbe CS Namacande 100
Cabo Delgado Muidumbe CS Ntchinga 100
Cabo Delgado Quissanga CS Bilibiza 96.5
Cabo Delgado Quissanga CS Cagembe 99.7
Cabo Delgado Quissanga CS Quissanga 93.7
Gaza Chibuto CS Chaimite 98.5
Gaza Chibuto CS Chimundo 88.7
Gaza Chibuto CS Chipadja 93.1
Gaza Chibuto CS Coca Missava 87
Gaza Chibuto CS Maqueze 87.2
Gaza Chibuto CS Meboi 87.7
Gaza Chicualacuala CS Mapai 85.9
Gaza Chigubo CS Ndindiza 93.6
Gaza Chokwe CS Hokwe 95.5
Gaza Chokwe CS Manjangue 94.2
Gaza Chokwe CS Urbano 3º Bairro 92.2
Gaza Cidade de Xai-Xai CS Marien Nguabi 89.8
Gaza Cidade de Xai-Xai CS Praia 93.8
Gaza Cidade de Xai-Xai CS Unidade 7 94.5
Gaza Distrito de Xai-Xai CS Banhine 86.9
Gaza Distrito de Xai-Xai CS Bungane 95.7
Gaza Distrito de Xai-Xai CS Chilaulane 92.1
Gaza Distrito de Xai-Xai CS Chipenhe 62.2
Gaza Distrito de Xai-Xai CS Julius Nyerere 85.9
Gaza Distrito de Xai-Xai CS Maciene 85.5
Gaza Distrito de Xai-Xai CS Nhacutse 78
Gaza Distrito de Xai-Xai CS Siaia 71.2
Gaza Distrito de Xai-Xai CS Vladimir Lenine 84.7
Gaza Distrito de Xai-Xai CS Zongoene 74.6
Gaza Distrito de Xai-Xai PS Ndambine 2000 78.9
Gaza Guija CS Chibabel 92.1
Gaza Mabalane CS Combomune 76.6
Gaza Mandlakazi CS Incadine 94.3
Gaza Mandlakazi CS Macuacua 94.1
Gaza Mandlakazi CS Tavane 89.7
Gaza Massangena CS Massangena 96.4
Gaza Massingir CS Massingir 86.2
Inhambane Cidade de Inhambane CS Balane (Urbano ) 99.1
Inhambane Cidade de Inhambane CS Muelé 99
Inhambane Cidade de Inhambane CS Salela 97.5
Inhambane Cidade de Inhambane HP Inhambane 97.9
Inhambane Funhalouro CS Funhalouro 99.3
Inhambane Govuro CS Doane 100
Inhambane Homoine CS Homoine 99
Inhambane Inharrime CS Chongola 99.1
Inhambane Inharrime CS Inharrime 99.2
Inhambane Inhassoro CS Inhassoro 90.1
Inhambane Inhassoro CS Mangugumete 85.3
Inhambane Jangamo CS Cumbana 100
Inhambane Jangamo CS Jangamo 93.3
Inhambane Mabote CS Mabote 93.9
Inhambane Massinga HD Massinga 98.2
Inhambane Maxixe CS Agostinho Neto 97
Inhambane Maxixe CS Mabil 99.5
Inhambane Maxixe CS Maxixe 94.2
Inhambane Maxixe HR Chicuque 99.4
Inhambane Morrumbene CS Morrumbene 98.4
Inhambane Panda CS Panda 98.5
Inhambane Vilankulos CS Chibuene 100
Inhambane Vilankulos CS Mapinhane 93.6
Inhambane Vilankulos HR Vilanculos 95.9
Inhambane Zavala CS Zandamela 91.4
Inhambane Zavala HD Quissico 95.4
Manica Barue HD Catandica 96.9
Manica Cidade de Chimoio CS 1º de Maio 96.9
Manica Cidade de Chimoio CS 7 De Abril 99
Manica Cidade de Chimoio CS Chissui 99.1
Manica Cidade de Chimoio CS Eduardo Mondlane 99.4
Manica Cidade de Chimoio CS Vila Nova 86.5
Manica Cidade de Chimoio HP Chimoio 100
Manica Cidade de Chimoio CS Nhamaonha 97.2
Manica Gondola CS Inchope 99.3
Manica Gondola HD Gondola 94.8
Manica Macate CS Macate 99.2
Manica Manica CS Machipanda 97.5
Manica Manica HD Manica 95.6
Manica Sussundenga CS Sussundenga 80.8
Manica Vanduzi CS Vanduzi 91.7
Maputo Boane CS Beleluane 92.8
Maputo Boane CS Boane 94
Maputo Boane CS Campoane 99.5
Maputo Boane CS Mulotana 95
Maputo Boane PS Matola-Rio 97.5
Maputo Magude CS Chichuco 100
Maputo Magude CS Magude 98.9
Maputo Magude CS Mahel 100
Maputo Magude CS Mapulanguene 100
Maputo Magude CS Moine 99.6
Maputo Magude CS Motaze 99.8
Maputo Magude CS Panjane 99.7
Maputo Manhica CS 3 de Fevereiro 100
Maputo Manhica CS Calanga 100
Maputo Manhica CS Chibucutso 100
Maputo Manhica CS Ilha Josina 100
Maputo Manhica CS Malavela 99.9
Maputo Manhica CS Maluana 99.7
Maputo Manhica CS Manhiça 99.9
Maputo Manhica CS Maragra 100
Maputo Manhica CS Munguine 99.9
Maputo Manhica CS Nwamatibjana 99.3
Maputo Manhica CS Taninga 100
Maputo Manhica HR Xinavane 100
Maputo Marracuene CS Habel Jafar 97.7
Maputo Marracuene CS Marracuene 92.2
Maputo Marracuene CS Mumemo 95.7
Maputo Marracuene CS Nhongonhane 94.8
Maputo Marracuene CS Ricatla 100
Maputo Matola CS Boquisso 100
Maputo Matola CS Khongolote 100
Maputo Matola CS Liberdade 100
Maputo Matola CS Machava II 99.2
Maputo Matola CS Matola 100
Maputo Matola CS Matola Gare 94.6
Maputo Matola CS Matola II 99.4
Maputo Matola CS Muhalaze 94.9
Maputo Matola CS Ndlavela 99
Maputo Matola CS S. Damanse 99.8
Maputo Matola CS Tsalala 100
Maputo Matola CS Unidade A 100
Maputo Matutuine CS Catuane 96.9
Maputo Matutuine CS Hindanne 95.7
Maputo Matutuine CS Matutuine 90.6
Maputo Matutuine CS Mungazine 96.7
Maputo Matutuine CS Nsime 99.6
Maputo Matutuine CS Ponta do Ouro 98.6
Maputo Matutuine CS Salamanga 97.1
Maputo Matutuine CS Santa Maria 99.6
Maputo Moamba CS Moamba 96.2
Maputo Moamba CS Ressano Garcia 99.3
Maputo Moamba CS Sabie 100
Maputo Moamba CS Tenga 99.3
Maputo Namaacha CS Changalane 97.6
Maputo Namaacha CS Goba 100
Maputo Namaacha CS Mafuiane 96.2
Maputo Namaacha CS Mahelane 100
Maputo Namaacha CS Namaacha 99.9
Maputo City Kamavota CS 1 de Junho 100
Maputo City Kamavota CS Albazine 98.9
Maputo City Kamavota CS Hulene 97.8
Maputo City Kamavota CS Mavalane 98.5
Maputo City Kamavota CS Pescadores 96.4
Maputo City Kamavota CS Romão 99.8
Maputo City Kamavota HG Mavalane 96.5
Maputo City KaMaxakene CS 1 de Maio 95.2
Maputo City KaMaxakene Hospital P. Caniço 92.3
Maputo City Kampfumo CS Alto Maé 96.6
Maputo City Kampfumo CS Malhangalene 99.6
Maputo City Kampfumo CS Maxaquene 99.4
Maputo City Kampfumo CS Polana Cimento 92.8
Maputo City Kampfumo CS Porto 97
Maputo City Kampfumo HCM Adultos 94.4
Maputo City Kampfumo HCM Pediatrico 95.9
Maputo City Kamubukwana CS Bagamoio 93.8
Maputo City Kamubukwana CS Inhagoia 98
Maputo City Kamubukwana CS Magoanine 97.1
Maputo City Kamubukwana CS Magoanine Tendas 99.7
Maputo City Kamubukwana CS Zimpeto 98
Maputo City Kamubukwana HPsi Infulene 99.2
Maputo City Kanyaka CS Inhaca 85.8
Maputo City Katembe CS Catembe 98.7
Maputo City Nlhamankulu CS Chamanculo 97.5
Maputo City Nlhamankulu CS Xipamanine 99
Maputo City Nlhamankulu HG José Macamo 97.6
Nampula Distrito de Nampula CS Anchilo 98.6
Nampula Distrito de Nampula CS Maratene 98.6
Nampula Distrito de Nampula CS Muhala Expansão 99.4
Nampula Distrito de Nampula CS Namicopo 96.1
Nampula Distrito de Nampula CS Napipine 98.6
Nampula Distrito de Nampula HG Marrere 95.4
Nampula Lalaua CS Lalaua 84.8
Nampula Larde CS Larde 100
Nampula Liupo CS Liupo 73.4
Nampula Malema CS Mutuali 95.6
Nampula Meconta CS Nacavala 100
Nampula Memba CS Memba 93.3
Nampula Moma CS Chalaua 100
Nampula Monapo H.D. Monapo 99.7
Nampula Mossuril CS Mossuril 100
Nampula Muecate CS Muecate 72.6
Nampula Nacala-a-Velha CS Nacala Porto 97.3
Nampula Nacala-a-Velha CS Nacla-a-Velha 99.5
Nampula Rapale CS Namaita 99.9
Nampula Rapale CS Rapale 99.4
Niassa Cuamba CS Cuamba 97.9
Niassa Distrito de Lichinga CS Chiuaula 98.9
Niassa Distrito de Lichinga CS Lichinga 99.3
Niassa Distrito de Lichinga CS Namacula 100
Niassa Mandimba CS Mandimba 97.8
Sofala Buzi HR BUZI 85.8
Sofala Cidade da Beira CS M. Mascarenha 90.8
Sofala Cidade da Beira CS Macurrungo 89.6
Sofala Cidade da Beira CS Munhava 89.8
Sofala Cidade da Beira CS Nhaconjo 92.9
Sofala Cidade da Beira CS Ponta Gea 91
Sofala Cidade da Beira HC BEIRA 96.4
Tete Angonia CS Ulongue 98.6
Tete Cahora Bassa CS Chitima 92.6
Tete Cahora Bassa HR Songo 83.7
Tete Changara CS Changara 85.8
Tete Changara CS Dzunga 98.7
Tete Chiuta CS Manje 98.6
Tete Cidade de Tete CS Mpadue 96.1
Tete Cidade de Tete CS Nº 1 - Bairro Magaia 93.4
Tete Cidade de Tete CS Nº 2 - Bairro Matundo 81.5
Tete Cidade de Tete CS Nº 3 - Bairro Manyanga 96.8
Tete Cidade de Tete CS Nº 4 - Bairro Muthemba 89.6
Tete Cidade de Tete HP Tete 68.4
Tete Doa CS Doa 85.6
Tete Magoe CS Magoe 95.8
Tete Magoe CS Mucumbura 93.7
Tete Moatize CS Moatize 86.8
Tete Moatize CS Zobue 64.2
Tete Mutarara HR Mutarara 95.5
Zambezia Alto Molocue CS Nauela 96.8
Zambezia Alto Molocue HD Alto Mulocue 88.5
Zambezia Cidade de Quelimane CS 17 De Setembro 86.4
Zambezia Cidade de Quelimane CS 24 de Julho 97.8
Zambezia Cidade de Quelimane CS 4 de Dezembro 91.1
Zambezia Cidade de Quelimane CS Chabeco 96
Zambezia Cidade de Quelimane CS Coalane 97.7
Zambezia Cidade de Quelimane CS Estação Malanha 89.1
Zambezia Cidade de Quelimane CS Incidua 96
Zambezia Cidade de Quelimane CS Madal 93.5
Zambezia Cidade de Quelimane CS Maquival-Rio 98.2
Zambezia Cidade de Quelimane CS Maquival Sede 94.8
Zambezia Cidade de Quelimane CS Micajune 98.8
Zambezia Cidade de Quelimane CS Namuinho 97.6
Zambezia Cidade de Quelimane CS Sangarivera 99.2
Zambezia Cidade de Quelimane CS Varela 98.6
Zambezia Cidade de Quelimane PS Zalala Mar 96.7
Zambezia Gile CS Moneia 97.1
Zambezia Gile HD Gilé 96.2
Zambezia Ile CS ILE-Sede 99.1
Zambezia Ile CS Mungulama 97.4
Zambezia Inhassunge CS Bingagira 94.3
Zambezia Inhassunge CS Chirimane 97.6
Zambezia Inhassunge CS Gonhane 94.4
Zambezia Inhassunge CS Inhassunge-Sede 97.3
Zambezia Inhassunge CS Palane-Mucula 97.2
Zambezia Maganja da Costa CS Cariua 97.1
Zambezia Maganja da Costa CS Maganja da Costa 96.1
Zambezia Maganja da Costa CS Nante 94.1
Zambezia Mocubela CS Gurai 98.2
Zambezia Mocubela CS Mocubela 99.4
Zambezia Mocubela CS Naico 98.8
Zambezia Mocubela CS Tapata 98.6
Zambezia Mulevala CS Mulevala 95.6
Zambezia Namacurra CS Macuse 99.2
Zambezia Namacurra CS Malei 98.7
Zambezia Namacurra CS Mbawa 95.8
Zambezia Namacurra CS Mexixine 89.8
Zambezia Namacurra CS Muceliua 93.9
Zambezia Namacurra CS Mugubia 98.3
Zambezia Namacurra CS Namacurra-Sede 98.9
Zambezia Namacurra PS Furquia 95.2
Zambezia Namacurra PS Mutange 93.7
Zambezia Pebane CS 7 de Abril 96.2
Zambezia Pebane CS Alto Maganha 97.9
Zambezia Pebane CS Magiga 85.7
Zambezia Pebane CS Pebane-Sede 95.4

3.4 Quality Issues by Variable

We analyzed each issue in the assessment of EPTS related to the documentation error, data entry error and lack of data entry, looking specifically to the variables from the primary sources of data, used for concordance assessment by province.

4 Discussion

Results from the last round of EPTS DQA showed a range of good quality data across health facilities and provinces, meaning that in the majority of health facilities assessed, there was concordance greater than 90% between the database and patient charts. In general, Niassa, Zambezia and Maputo province had good quality data in most of the variables assessed, as the percentage of quality issues were less than 10% in most of the cases. Some of the health facilities assessed, mainly in Gaza and Tete provinces, had global concordance results that highlighted data quality issues. There were some health facilities in Inhambane and Maputo City (one site), Manica (two sites), Nampula and Sofala (three sites) and Zambezia (five sites) with global concordance less than 90%, showing quality issues in those health facilities.

Most of the issues with concordance came from documentation error and lack of data entry, highlighting a need for more resources dedicated to retrospective data entry. The causes of discordance varied by provinces, with issues around documentation error and lack of data entry concentrated in Zambezia, Tete, Manica, Sofala, Inhambane and Maputo City, while issues related with data entry error concentrated in Cabo Delgado and Nampula. The lack of data entry and data entry error could be due to rapid scale up of patients on treatment without corresponding increases in data entry staffing or other human resources constraints. Documentation error suggests a need for more training for data entry clerks and increased supervision.

In terms of programmatic effect, global concordance results suggest reliable, complete, accurate and timely data. Most health facilities evaluated had 90% or higher concordance across indicators. Our findings highlight good quality data in EPTS to inform resource allocation, epidemic trend monitoring, and clinical care. However, certain variables had more data entry errors or lack of data entry, such as laboratory results, PMTCT and ART during pregnancy. For labs, data entry errors and lack of data entry were concentrated around lack of registering the date of sample collection, error or lack of result and date of delivering the viral load results, as well as the PMTCT area for not completing fields related to estimated date of delivery, date of last menstruation, and pregnancy in ART. These findings point to a need for more clinical and professional training in how to record this type of patient information. Overall, our findings support confidence in high quality EPTS data.

5 Conclusion

The lessons learned from this assessment were that health facility staff and providers should be cognizant of the possible discrepancies between paper and electronic information and consider an EPTS point of care system, whenever feasible. Most health facilities had strong agreement between data in patient files and data in EPTS, though, some health facilities in two provinces had substantial issues with data quality.

Results relating to laboratory and PMTCT suggest a need for quality improvement in EPTS data entry for these program areas. Aside from these areas, our findings highly good quality data in EPTS in Mozambique and strong concordance between patient information in electronic databases and patient charts.


  1. File shared CDC containing EPTS versions in use by Health Units on January 16, 2018

  2. Data of volume of patients in ART shared by HIV program.